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Abstract 

The effect of anisotropy in thermal vibrations on dy- 
namical electron diffraction by a crystal is investigated. 
Expressions are first derived for both the elastic and 
thermal diffuse scattering (TDS) absorptive atomic scat- 
tering amplitudes for the general case of anisotropic 
thermal vibrations. These expressions are then used to 
calculate the complex structure factors for an SrTiO 3 
single crystal at 293K. It is shown that the errors 
introduced by using an averaged Debye-Waller factor 
are typically of the order 1-5% for low- and medium- 
order reflections. 

I. Introduction 

In the usual dynamical theory of electron diffraction, 
the interaction between the incident fast electrons and 
the crystal is described by a simple periodic potential 
V(r) (Bethe, 1928; Hirsch, Howie, Nicholson, Pashley 
& Whelan, 1977; Cowley, 1990; Reimer, 1989; Spence 
& Zuo, 1992). The wave function involved in the 
wave equation is assumed to be a single-electron wave 
function that depends only on the coordinate r of the 
incident fast electron. This is, however, a very simplified 
version of the complicated scattering processes of the 
electron by a crystal. A crystal is a very complex 
system of electrons and nuclei that can be excited by the 
incident and scattered electrons (Ohtsuki, 1983; Reimer, 
1989; Wang, 1995; Egerton, 1986). The scattering pro- 
cesses are therefore complicated many-body processes 
and in general the problem cannot be solved exactly. 
Instead, an effective potential called optical potential or 
pseudopotential is introduced to include the complication 
of many-body interactions (Yoshioka, 1957; Dederichs, 
1972; Dudarev, Peng & Whelan, 1992). 

For dynamical electron diffraction by a crystal, the 
optical potential may be divided into two parts, of which 
the first part is the averaged potential and the second 
part is the deviation from the averaged potential. Since 
the averaged potential is time independent, scattering 
events involving this part suffer no energy losses and the 
term is usually referred to as the elastic potential. For a 
real crystal, the deviation from the averaged periodic 
potential is aperiodic and time dependent. Scattering 
events involving this deviation potential are therefore 
associated with diffuse and inelastic scattering. It has 

now been firmly established that among the major inelas- 
tic mechanisms, i.e. thermal diffuse scattering (TDS), 
plasmon and inner-shell electronic excitations, TDS con- 
tribution dominates over the other two by an order of 
magnitude for g # 0 (Whelan, 1965; Hall & Hirsch, 
1965; Humphreys & Hirsch, 1968; Radi, 1970; Rez, 
1976). In this paper, we are concerned only with the 
TDS contribution to the optical potential. 

The subject of TDS in electron diffraction has been 
discussed extensively by many researches, see for 
example Hall & Hirsch (1965), Rossouw & Bursill 
(1985), Bird & King (1990), Allen & Rossouw (1989), 
Dudarev, Peng & Ryazanov (1991), Dudarev, Peng 
& Whelan (1993b, 1995) and Peng, Ren, Dudarev & 
Whelan (1996). All these studies assumed, however, 
that the thermal vibrations are isotropic. It is the aim 
of this paper to investigate the effect of anisotropy in 
thermal vibrations on dynamical electron diffraction 
and to shown that for a typical material the anisotropy 
in thermal vibrations is not negligible. In §2, we will 
first present a formal derivation of the optical potential 
for high-energy electron diffraction by a crystal. The 
general formula will then be used in §§3 and 4 to give 
general expressions for the elastic and absorptive atomic 
scattering amplitudes for the general case of anisotropic 
thermal vibrations. Numerical results are given in §5 for 
a single crystal of SrTiO 3. It is shown that the errors 
introduced by using an averaged Debye-Waller factor 
are typically of the order of a few percent for low- and 
medium-order reflections. 

2. Optical potential 

In this section, we present a formal derivation of the 
optical potential for high-energy electron diffraction by 
a crystal. Following Dederichs (1972), we write the total 
Hamiltonian of the system as 

/ - /=  h 0 + H 0 + v, (1) 

in which h 0 = -(h2/87r2m)V 2 is the free Hamilton- 
ian of the incident electron, H 0 is the Hamiltonian 
for all the electrons and nuclei of the crystal, and V 
represents the interaction of the incident electron with 
the crystal. In general, V depends on all the coordi- 
nates of the electrons and nuclei of the crystal, i.e. 
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664 ANISOTROPIC THERMAL VIBRATIONS 

V = V(r . . . .  , r .  . . . . .  rj . . . .  ), where r,. and rj denote the 
coordinates of the nth nucleus and ith crystal electron, 
respectively. If the incident electron and the crystal are 
well separated, we have the following expression and 
equation for the incident plane-wave function: 

qv k = exp( ik . r ) ,  ho~ k = (h2/87r2m)k2qgk : Ek~Pk (2) 

and for the crystal 

4~ = q~o( . . . .  r , . . . , r j , . . . ) ,  H04~ = E~4~. (3) 

By averaging (10) over the thermal distribution of the 
initial crystal states ~b~, we obtain for the elastic wave 
function 

~pk(r) = (~bk.,~) 

= ( l / Z ) ~ e x p ( - E ~ / k B T ) ( O ~ l C k , ~ ( r ) ) ,  (11) 

in which 

Z - ~ e x p ( - E ~ / k B T  ). (12) 
Ot 

In the course of dynamical electron diffraction by a Having defined the elastic wave function (11), we now 
crystal, the incident electron wave function is usually seek to find an equation for this elastic wave function. 
not separable from that of the crystal. Let ~k. ~ = The optical potential V °p is introduced for this purpose. 
kVk, ~(r, . . . ,  r,, . . . .  , rj . . . .  ) be the total wave function, The definition equation for the optical potential is similar 
then we have for the whole system 

(h o + H o + V)~Pk,,~ = (E  k + Eo~)~Vk, o. (4) 

To obtain a formal solution of (4), we write 

=  k¢o + (5) 

Substitution of (5) into (4) leads to a differential 
equation 

to the Lippmann-Schwinger equation (9) 

~k = qOk + GoV°P~k, (13) 

.but now only the elastic wave function is involved. By 
writing V = V °p + ( V -  V °p) and using equation (9), 
we obtain 

~'tk, ~ -- [1/(1 -- OoV°P)]~kOo ~ --}- G v ( g -  V°P)~tk, c~ , 

(14) 

(E k + E ,  - H 0 - h0)~k, ,~ = V~k, ,~. (6) 

Symbolically, this equation may be solved with the 
help of a free-particle Green function G 0, defined as 

where 

G v = [1/(1 - GoV°P)IG o 

= 1 / ( E  k + E o, + ie - H o - h o - V °p). (15) 

to give 

G O = I / ( E  k + Eo, + ie - H o - ho), (7) 

= OoVg'k,, , (8) 

in equation (7), e is a small quantity. 
Substitution of (8) into (5) gives the famous 

Lippmann-Schwinger equation (Schiff, 1968) 

~k,~  = ~PkdPo, + GoVkVk,~. (9) 

The concept of the opt ica l  po t en t i a l  is introduced to 
take into account the effect of many-body interactions 
on the elastic component of the total wave function. By 
elastic scattering, we mean those processes for which the 
initial and final states of the crystal are identical. For the 
total state ~Pk. ~, the elastic component is defined as 

~ k . ~ ( r )  = (~l~'k,~(r)) 
= f . . . d r , , . . . d r j . . .  ~b*(...,r,, . . . . .  rj . . . .  ) 

x ~/'k. ~(r  . . . . .  r ,  . . . .  , r j  . . . .  ). (10) 

To manipulate (14) even further, we multiply (13) 
from the right-hand side by ~b,~ and, after some algebra, 
we obtain 

~bkq5 ~ = [1/(1 - aoV°P)]qOk(fic~. (16) 

Substitution of (16) into (14) gives 

~lk, a = Ck~)a 4,- G v ( g -  V°P)~tk, a 

= { 1/[1 - G v ( V -  V°P)]}~bk~ba 

(1 -4- G v ( V -  V°P){1/[1 - a v ( V -  V°P)l})~jkq~ot. 

(17) 

Multiplying (17) from the left by ~b,~ and performing 
the average, i.e. ( . . . ) ,  of the equation obtained over the 
initial states using equation (11), we obtain 

(¢k, 
= Ck -t- [1/(E k + ie - h o - V°P)] 

X ( ( V -  V ° P ) { 1 / [ 1 - G v ( V -  V°P)l}>~jk, 

(18) 
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which gives 

0 -  ( (V-  V°P){1/[1-Gv(V- V°P)]}) 
= ( (V-  V°P) [1 + {1/[1-Gv(V- V°P)]} 

×  v(V- 

and finally 

(19) 

in their ground states (Ashcroft & Mermin, 1976). The 
interacting potential is then given by 

f V(r )= • • e R • • r  • r•• 

+ f ( e Z / l r  - R' - r . l)p°(R ') dR'} 

- E f dR %,(r - R)6 (R  - r,,), 
n 

(24) 

V °p = ( V ) +  ( ( V -  V°P)( 1/[1 - G v ( V -  g°P)]} 

x G v ( V -  V°P)) 

= (v)  + ( ( v -  v °p) 

x [1/ (E k + e~  + ie - h o - H o - V)](V- V°P)), 
(20) 

and this is the equation for the optical potential. For 
high-energy electron diffraction, the interaction between 
the incident electrons and the crystal is relatively weak, 
i.e. V < <  E k, we may neglect V in the denominator and 
iterate equation (20) up to second order to obtain 

V °p '~  V (0) --[- V (1) (21) 

with 
V(°)= (V), (22) 

being the averaged potential and 

V (') = ( ( V -  ( V ) ) [ 1 / ( E  k + Ea + ie - h o - H0) ] 

x ( V -  (V)))  (23) 

being the first-order correction due to diffuse scattering. 
Recent quantitative electron diffraction work shown that 
this approximation works with high precision (Zuo, 
Spence & O'Keeffe, 1988; Zuo & Spence, 1991; Spence 
& Zuo, 1992; Saunders et al., 1995; Ren, Zuo & Peng, 
1997). 

3. The averaged potential  

In the preceding section, we have derived a general 
expression (21) for the optical potential in which the 
first term on the right-hand side is simply the averaged 
crystal potential. Since this term is time independent, 
scattering by this averaged potential does not involve 
energy losses and is therefore called elastic scattering. 

For TDS and to a good approximation, we may 
assume that the atomic electrons follow adiabatically 
the motion of nucleus and that all atomic electrons are 

in which Z n is the atomic number and p°(R') is the 
electron density of the nth atom in its ground state, the 
summation on n is over all atoms in the crystal and 
~p.(r) is given by 

%,(r) - Z ,  e 2 / r +  f ( e Z / I r -  R '  o , = [)p,(R) dR'. (25) 

Let r n = Rn + u n, where Rn denotes the equilibrium 
position of the nth atom and u n represents the thermal 
displacement of the atom from its thermal equilibrium 
position, we have for the averaged potential 

<V(r)> = ~ f dR ~o.(r - R)<6(R - R.  - u . ) ) .  (26) 
n 

The Fourier coefficients of the averaged potential is 
given by 

Vg = (l /V) f ( V ( r ) ) e x p ( - i g -  r ) d r  

= _ (h2/87r2mo)(47r/g2) 

x ~-~ffiB(s)T/(g) exp(--ig. Ri), 
i 

(27) 

in which m 0 is the rest mass of the electron, V and I2 are 
the volume of the crystal and a unit cell, respectively, 
f/B(s) is the Born atomic scattering amplitude (Cowley, 
1992) with s = g/47r, T~(g) is the temperature fac tor  
(Willis & Pryor, 1975) of the ith atom, and the summa- 
tion on i is over a unit cell. In (27), the Born atomic 
scattering amplitude is related to q0i(r) via the following 
relation: 

f/B(g) = _(27rmo/h 2) f qoi(r) exp( - ig-  r) dr (28) 

and for a harmonic crystal the temperature factor is given 
by 

~(g)  = ( exp( -g .  ui)) = exp[-½((g,  ui)2)]. (29) 

Let a I , a 2, a 3 be the real-space lattice vectors and b I , 
b2, b 3 be the reciprocal-space lattice vectors such that 

a i . b ;  - 60" 
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In terms of these vectors, a real-space displacement 
vector u can be expressed as 

U = u l a  I + u 2 a  2 + u 3 a 3 ,  (30) 

and a reciprocal-sl~ace vector g as 

we then have 

a s  

g = hb I + kb 2 + / b  3, (31) 

2 2 ( (g" u) 2) = h 2 (u 2) + k 2 (u 2) + l <u3) 

+ 2hk(u,u2) + 2hl(ulu3) + 2kl(u2u3). 
(32) 

In matrix notation the above expression can be written 

(u) (g.  u) 2 = (hkl )  u 2 (u, U 2 U3) --" G r ( x x r ) G ,  
U 3 

where G and X are 3 × 1 column vectors and their 
transpose are given by 

G r = (h k l), 

and 
X r =  (ul u2 u3). 

The temperature factor (29) then becomes 

Ti(g) = exp(-Gr/5iG),  (33) 

in which the matrix/5 = ! r 2 ( X X )  is a symmetric matrix, 

[ <u,b <u,u2) <u,u3)\ 
/ 5 = 2 ' (  X X r ) =  2' {(UzU,) (u2) (UzU3)), (34) 

and is usually referred to as the mean-square displace- 
ment matrix. In X-ray crystallography, the general 
anisotropic vibration parameters are usually given as 
the elements of a U matrix that are related to that of 
the /5  matrix by the relation 

f l ( i  - "  27r2 U i j b i b j  • (35) 

Explicitly, the anisotropic temperature factor is given 
by 

"]-(g) = exp{-27r2[Ul l (hbl )  2 + U22(kb2) 2 + U33(lb3) 2 

+ 2U12(hbi)(kb2) + 2Ui3(hbl)(lb3) 

+ 2U23(kb2)(lb3)]}. (36) 

Experimentally, U i. may be obtained by fitting quan- 
titatively the calcui~ated X-ray beam intensities with the 
experimentally measured X-ray intensities using the gen- 
eral anisotropic temperature factor (Giacovazzo, 1992). 

4. The absorptive potential 

In this section, we consider the first-order correction to 
the average potential. This correction is represented by 
the second term of (21). In real-space representation, 
substituting equations (24) and (26) into (23) gives 

V(l)(r ,r  ') = ~ ( f f d R d R ' q o i ( r -  R) 
t,J 

x [ 6 ( R -  ri) - < 6 ( R -  ri))] 

x ( r l [1 / (E  k + E~ + ie - h o - H0)]lr' ) 
i 

x ~j(r '  - R')[6(R' - rj) - (6(R' - r j))]) .  

(37) 
Q 

For thermal diffuse scattering, since the energies of 
phonons are much smaller than the energy of the incident 
electrons, we may neglect E,~ and H 0 in (37) to obtain 

V(l)(r, r ')  = (87r2m/h 2) E ff  dR dR'qoi ( r -  R) 
i , j  

x Go(r, r')~oy(r' - R') 

× ( 6 ( R -  ri)6(R' - rj) 

- < 6 ( R -  ri))(6(R' - rj))3, (38) 
/ 

where 

G0(r, r '  ) 

= (h2/87r2m)<rl[1/(Ek + ie -- h0)]lr' ) 

= - ( 1 / 4 7 r ) [ e x p ( i k o l r -  r ' l ) ] / l r  - r'[ 

= [1/(27r) 3] f {exp[ik. (r -- r ' )]}/(k~ - k 2) dk 

(39) 

is the free-space Green function (see for example 
Dudarev, Peng & Whelan, 1993a). When the equation 
acts on the dynamical electron wave function, we have 

V<l)~bk -- f V(i)(r, la)~bk(r ') dr' 

= _ (27rm/h 2) ~ f dr'~bk(() 
i,j 

x { [ e x p ( i k 0 l r  - r'l)]/Ir - r'l} f f  dR dR' 

x ~ i ( r -  R)~j(r '  - R ' ) ( 6 ( R -  ri)6(R' - rj) 

- (6(R - r;)) (6(R' - r j ) ) ) .  (40) 

In equation (40), we note that the integrand depends 
on the phase difference between wave schttered at r 
and r' via a rapidly oscillating function exp(ik0[r-  r'l). 
Contributions from different atoms with i # j will be 
cancelled out with each other after the integration. We 
may therefore retain in the summation only those terms 
with i = j. This simplification is equivalent to the use 
of an Einstein model for TDS (Hall & Hirsch, 1965). 
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Equation (40) then becomes 

v ( l ) ¢ k  = -- (27rm/h 2) ~ f dr'~bk(r/) 
i 

x [ e x p ( i k 0 l r  - r ' l ) / I r  - r'l] ff  dR dR' 

x cPi(r-  R)qoi(r' - R ' ) ( 6 ( R -  ri)6(R' - r i )  

- ( 6 ( R -  ri))(6(R' - ri))~. (41) 
/ 

Fourier transforming equation (41) leads to 

.~V(1)¢k  = [l/(27r)3](27h2/mo$2) f [ d k / ( ~  - k 2 + ie)] 

x E f dh f /B(g -  k ) f f ( k  - h)~b(h) 
i 

x ( (exp[- i (g  - h ) .  ri]} 

- ( e x p [ - i ( g -  k ) .  ri]) 

x (exp[- i (k  - h). ri])) 

= f vTOS(g,h)~b(h) Oh, (42) 

in which ~b(h) is the Fourier transform of the elastic 
wave function 

and 

~ ( h )  -- [1/(271-) 3] f C k ( r )  e x p ( - - i g  • r ) d r  (43)  

vTDS(g, h) = [1/(27r)3](2"/h2/moY2) f[dk/(k20 - k 2 + ie)] 

× ~-'~.fiB(g- k ) f f ( k -  h) 
i 

x e x p [ - i ( g -  h ) .  Ri] 

× {(exp[- i(g - h ) .  ui]) 

- (exp[-i(g - k ) .  ui]} 

× (exp[- i (k  - h)-ui ] )} ,  (44) 

where r i - R i + U i and the summation over i is over 
a unit cell. 

Using Dirac's formula 

1/(k~ - k 2 + ie) -- T~[1/(~ - k2)] - i(Tr/2ko)6(k o - k) 
(45) 

and substituting (45) into (44) shows that VO)~bk is 
in general a complex quantity. The real part of this 
complex quantity is due to virtual diffuse scattering and 
the imaginary part is due to real diffuse scattering. It has 
been shown that the contribution resulting from virtual 
diffuse scattering is of an order of magnitude less than 
that resulting from real diffuse scattering (Rez, 1976). 
In what follows, we shall therefore consider only the 
imaginary part. If ' the real part is neglected, equation 
(44) becomes 

vTDS(g,h) = [1/(27r)3](27h2/moQ)(-iTr/2ko) 

x E f dk 6(k - k0)f/B(g - k)f/B(k - h) 
i 

× e x p [ - i ( g -  h ) .  Ri ]{T/ (g-  h) 

- T / ( g -  k ) T / ( k -  h)}. (46) 

To simplify the above expression, we introduce two 
new parameters, 47rs = g - h and s', such that 

k - h = (s/2 + s')47r, g -  k = (s/2 - s')47r. 

To a good approximation, we may neglect the curvature 
of the Ewald sphere in evaluating (46) and this approxi- 
mation is called the high-energy approximation (Cowley, 
1990). Under this approximation, we have 

vTDS(g,h) = _ (h2/87r2rno)(47r/Y2) 

× ~-~fiTDS(s) exp[--i(g -- h ) .  R/] 
i 

= va'DS(g -- h), (47) 

where 

LTDS($) --- (2h/nov) f ds'f/(Is/2 + s'l)f,(Is/2 - s'l) 

× -  (s/2 + - s ' ) }  

(48)  

and this expression is identical to the conventional for- 
mula (Hall & Hirsch, 1965) in form. The only difference 
between the present expression and that of Hall & Hirsch 
is that their isotropic temperature factor is now replaced 
by the general anisotropic temperature factor. 

Substitution of (47) into (42) gives 

• ~ '{V(1)¢k  } --  f vTDS(g  -- h ) # ( h ) d h  

= vTDS(g) * ff'(g). (49) 

Inverse Fourier transformation of (49) gives an ex- 
pression fo r  V(I)¢k" 

: : - - ,  { v T O S ( g ) .  

= V(l)(r)~k(r), (50) 

in which 

V(l)(r) : f varDS(g)exp(ig • r )dg ,  (51) 

and this expression clearly shows that V (l) is a local 
potential, i.e. it depends only on one site coordinate r. 

5 .  C a l c u l a t i o n s  

In this section, we are concerned with applications of 
equations (27), (36) and (48) for calculating the general 
complex anisotropic structure factors. Combining (27) 
and (48), we'obtain a general expression for the complex 
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anisotropic structure factors in which 27rH r -  (gx, gy, gz) and 

Fg - ~-~]{fff(s)T/(g) +fiTDS(s)} exp(--ig. Ri), (52) 
i 

in which f B i (S) is the Born atomic scattering amplitude 
(28) of the ith atom, fi Tns (s) is the TDS atomic scattering 
amplitude (48), T/(g) is the temperature factor (36) and 
the summation is over all atoms within a unit cell. 
Suppose that within the unit cell there exist a total of 
t symmetry-independent atoms and that all atoms are 
related by a total of m symmetry operators (m being the 
order of the space group), then the expression for the 
structure factor may be rewritten as 

t m 

j= l  
f TDS {fjB(s)Tjs(g) + js (s)} exp ( - ig .  Rj~), 

(53) 
in which nj is the occupation number of the jth atom, 
which is defined as m. /m ,  m. being the number of 

• . .  J J 

different atomic positions that are symmetry equivalent 
to the jth atom. For thejth group of symmetry-equivalent 
atoms, the sth symmetry operator 7Z ~;s = (7~s, "Tss), in 
which "R. s denotes a 3 x 3 rotation matrix and T s a 3 x 1 
translation vector. Using these operators, we have for 
the sth atom within the jth group 

R j , -  "R.sR i + Tss (54) 

and 

Tjs(g ) - exp(--Gr~js G) -- exp[ -Gr(TZs~jTEr)G] .  

(55) 

[ <Ux > <UxUy> <UxUz> I 
n -  [(UyUx) (u2) (UyUz) (58) 

~(UzUx> (UzUy) (U 2) 

The general anisotropic temperature factor is given by 

T(g)  - exp(-27rEH r • B.  H). (59) 

The relation between the B matrix and the ~ matrix 
introduced in §3 may be obtained by comparing (33) 
and (59), giving 

27r2H r .  B.  H - G r .  fl • G. (60) 

Following Willis & Pryor (1975), we choose the 
following Cartesian axes to define the B matrix. Let the x 
axis lie along b 1 , the y axis lie in the plane containing b 1 
and b 2, and the z axis complete a right-handed set. The 
vector G is then given in terms of H via a transformation 
matrix 

where 

G - F . H ,  (61) 

cot 3  1 a coso  / 
F - 27r 0 1/(b 2 sin/33) a 2 c o s  o£ 1 (62) 

0 0 a 3 

and the OliS and /~i S a r e  the angles of the direct and 
reciprocal cells. Substitution of (61) into (60) gives 

B - (1/27r2)F g . /5 .  F. (63) 

For an atom lying on a special site, there exist n 
symmetry operations that leave the site invariant. We 
then have the invariant of the temperature matrices, 

~ s - R s / ~ I R T - ~ ,  s -  1 , . . . , n .  (56) 

From these conditions, the/3 restrictions may be derived 
(Willis & Pryor, 1975). 

To demonstrate the effect of anisotropy in thermal 
vibrations on the structure factors, we first define an 
isotropic temperature or Debye-Waller factor. This 
quantity may be obtained by defining a B matrix with 
respect to Cartesian axes. Let 

and 

we then have 

u - Uxi + Uyj + uzk, 

g - gx i + gyj + gz k, 

46 ° 

4' ¢ " ! , f  ~l t 

t 

( ( u .  g)2)  _ &r2HrBH, (57) 
Fig. 1. Graphic representation of the thermal ellipsoids for an SrTiO3 

single crystal at 296 K. 
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Table 1. Structural and anisotropic vibration parameters (a -2) for strontium titanate (Abramov, Tsirelson, 
Zavodnik, Ivanov & Brown, 1995) 

a (,~) U(Sr) B(Sr) U(Ti) B(Ti) UII(O ) U22(O ) B(O) 

3.901 0.00787 0.6214 0.00557 0.4398 0.004675 0.011575 0.7323 

In terms of the elements of the B matrix, the averaged 
mean-square displacement is given by 

(u 2) = ~ t r a c e ( B ) =  I . .~(Blt + B22 + B33 ). (64) 

The usual Debye-Waller factor is related to the mean- 
square displacement via the temperature B factors, which 
are defined as 

B = 871"2(//2), (65) 

and the Debye-Wallerfactor M~, is given by 

Mg = (g2/47r2)B. (66) 

We now consider the calculations of complex struc- 
ture factors for strontium titanate, i.e. SrTiO 3. This 
structure belongs to the important perovskite ABX 3 series 
and was recently studied by high-precision single-crystal 
X-ray analysis (Abramov, Tsirelson, Zavodnik, Ivanov 
& Brown, 1995). At room temperature_, it shows a cubic 
structure and the space group is Pm3m. Table 1 gives 
a summary of the relevant structural and anisotropic 
thermal vibration parameters. Shown in Fig. 1 is a 
graphic representation of the thermal ellipsoids, which 
is generated using the Cerius 2 software. 

In an SrTiO 3 single crystal, the Sr atom is at the 
special site (a), i.e. at (0, 0, 0) and the Ti atom is at the 
special site (b), i.e. at (0.5, 0.5, 0.5), for space group 221 
(Hahn, 1983). The fli restrictions for both sites are case 
17, requiring fill =/~22 =/333 and file =/313 -- /323 = 0 
(Willis & Pryor, 1975). The U matrices [which are 
related to /3 via (35)] for the two atoms are therefore 
of the isotropic form 

U =  0 U . (67) 
0 0 

The three O atoms in SrTiO 3 are at the special site (c), 
and their atomic coordinates are (0, 0.5, 0.5), (0.5, 0, 0.5), 
(0.5, 0.5, 0). For the first O atom at (0, 0.5, 0.5), the flij 
restrictions are/322 =/333 and ill2 --/313 = fl23 = 0. The 
U matrix for this O atom is of the form 

Ull 0 0 ) 
U(O1) = 0 U22 0 . (68) 

0 0 U22 
The second O atom at (0.5, 0, 0.5) is related to the 

first O atom by a rotation 3+[111]. The corresponding 
rotation matrix and temperature matrix U(O2) for this 

atom are given by (Z °1) 
"1~2 = 3+[ 111 ] = 0 0 , 

1 0 

u(o ) o 
= o V,,o 

0) 
0 . (69) 

U22 

The third O atom at (0.5, 0.5, 0) is related to the 
first O atom by the symmetry operation 3-[111]. The 
corresponding rotation matrix and temperature matrix 
U(O3) are given by 

(i' o) 0 1 , 
0 0 

( 
"R. 3 = 3 - [ l l l ]  = 

U22 0 0 
0 U22 0 ) . (70) 
0 0 Ull 

u ( o 3 )  = " 3u(o, = 

The mean-square displacement and the B factor are 
obtained using equations (64) and (65). For strontium, 
we have (u 2) = 0.007 87/~2 and B = 0.6214/~2. 
For titanium, (u 2) = 0.00557/~2 and B = 0.4398/~2. 
For oxygen, we have (u 2) - 0.009275/~2 and B = 
0.7323/~2. 

Shown in Tables 2-4 are some calculated zero- 
order Laue-zone (ZOLZ) structure factors for three 
main zone axes of the SrTiO 3 single crystal at 296 K, 
using an isotropic Debye-Waller factor and the general 
anisotropic vibration parameters listed in Table 1. The 
error introduced by using the isotropic Debye-Waller 
factor is evaluated using the expression 

Error = IIu~ol- IGm~oll/Iv~ol. (71) 

The calculations listed in the tables were made for 
100keV primary-beam energy. In evaluating the ab- 
sorptive scattering amplitudes, we have used the multi- 
dimensional integrating subroutine DO 1FCF of the NAG 
library for integration of the integrals. This subroutine 
uses an adaptive subdivision procedure and the multi- 
dimensional integration may be performed to a specified 
accuracy. The general-purpose two-dimensional integrat- 
ing subroutine DO1DAF of the NAG library (used in 
Bird & King, 1990) has also been used. We found, 
however, that, although the subroutine is extremely fast, 
this subroutine lacks control in its relative accuracy 
and in almost all our calculations we failed to achieve 
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Table 2. Some [001] zone axis structure factors of SrTi03 (in A-e ) for isotropic and anisotropic thermal vibrations 

h k l Re(Uiso) Im(Uiso) Re(Uaniso)  Im(Uaniso) Error (%) 

2 0 0 0.6269E--01 0.2733E--02 0.6269E--01 0.2727E--02 0.011 
1 1 0 0.4496E-01 0.2335E-02 0.4485E-01 0.2377E-02 0.264 
4 0 0 0.2380E--01 0.2014E--02 0.2381E--01 0.2010E--02 0.082 
3 1 0 0.1857E--01 0.1908E--02 0.1831E--01 0.1931E-02 1.362 
2 2 0 0.4153E-01 0.2451E-02 0.4153E-01 0.2445E-02 0.016 
6 0 0 0.1039E-01 0.1313E--02 0.1043E--01 0.1312E-02 0.369 
5 I 0 0.8357E--02 0.1361E--02 0.8088E-02 0.1364E-02 3.187 
4 2 0 0.1934E-01 0.1839E--02 0.1935E--01 0.1835E--02 0.068 
3 3 0 0.1158E--01 0.1601E--02 0.1132E--01 0.1613E--02 2.236 
8 0 0 0.4921E--02 0.7628E--03 0.4973E--02 0.7669E-03 1.061 
7 1 0 0.4249E--02 0.8657E-03 0.4020E-02 0.8565E-03 5.305 
6 2 0 0.9176E--02 0.1212E--02 0.9206E--02 0.1211E-02 0.325 
5 3 0 0.6453E-02 0.1165E--02 0.6214E-02 0.1165E-02 3.649 
4 4 0 0.1189E--01 0.1424E--02 0.1190E--01 0.1420E--02 0.081 
8 2 0 0.4498E--02 0.7074E-03 0.4542E-02 0.7104E-03 0.980 
7 3 0 0.3549E--02 0.7488E--03 0.3351E--02 0.7406E--03 5.468 
6 4 0 0.6577E--02 0.9587E--03 0.6593E--02 0.9562E--03 0.252 
5 5 0 0.4249E--02 0.8657E-03 0.4053E-02 0.8616E-03 4.532 
8 4 0 0.3488E--02 0.5648E--03 0.3516E--02 0.5657E--03 0.794 
7 5 0 0.2562E--02 0.5622E--03 0.2408E--02 0.5553E--03 5.888 
6 6 0 0.4122E-02 0.6562E--03 0.4134E-02 0.6539E-03 0.298 

T a b l e  3. Some [011] zone axis structure factors of  SrTi03 (in A-2 ) for isotropic and anisotropic thermal vibrations 

h k l Re(Ui~) lm(Uiso)  Re(Uaniso)  Im(Uaniso) Error (%) 

2 0 0 0.6269E--01 0.2733E--02 0.6269E-01 0.2729E--02 0.008 
4 0 0 0.2380E--01 0.2014E--02 0.2381E--01 0.2012E--02 0.081 
0 --1 1 0.4496E--01 0.2335E--02 0.4485E--01 0.2308E--02 0.254 
I --! 1 0.3301E--01 0.1630E--02 0.3301E-01 0.1627E-02 0.011 
2 -1  1 0.2646E--01 0.2100E--02 0.2667E-01 0.2090E-02 0.803 
3 --1 I 0.1499E--01 0.1297E-02 0.1500E-01 0.1294E-02 0.049 
4 --1 I 0.1158E-01 0.1601E--02 0.1202E--01 0.1618E--02 3.794 
5 --! 1 0.6332E--02 0.8717E--03 0.6357E--02 0.8708E--03 0.384 
0 --2 2 0.4153E--01 0.2451E--02 0.4153E-01 0.2448E-02 0.009 
2 --2 2 0.3047E--01 0.2216E-02 0.3047E-01 0.2212E--02 0.010 
4 - 2  2 0.1615E-01 0.1685E-02 0.1616E-01 0.1682E-02 0.046 
0 - 3  3 0.1158E-01 0.1601E--02 0.1132E-01 0.1566E-02 2.253 
1 - 3  3 0.9127E--02 0.1057E--02 0.9131E-02 0.1055E-02 0.048 
2 --3 3 0.9725E--02 0.1474E-02 0.9607E-02 0.1450E-02 1.218 
3 --3 3 0.6332E--02 0.8717E--03 0.6332E--02 0.8691E--03 0.042 
4 --3 3 0.6453E--02 0.1165E--02 0.6551E--02 0.1163E--02 1.489 

T a b l e  4.  Some [111] zone axis structure factors of SrTi03 (in A-Z ) for isotropic and anisotropic thermal vibrations 

h k l Re(Uiso) Im(Uiso) Re(Uaniso)  Im(Uaniso) Error (%) 

- 1  I 0 0.4496E--01 0.2335E-02 0.4485E-01 0.2332E-02 0.248 
- !  0 1 0.4496E--01 0.2335E-02 0.4485E--01 0.2332E-02 0.248 
-1  -1  2 0.2646E-01 0.2100E-02 0.2667E-01 0.2111E-02 0.803 
- 2  2 0 0.4153E--01 0.2451E-02 0.4153E-01 0.2449E-02 0.007 
- 2  I 1 0.2646E--01 0.2100E-02 0.2667E-01 0.2111E-02 0.803 
- 2  0 2 0.4153E-01 0.2451E-02 0.4153E--01 0.2449E-02 0.007 
--2 --1 3 0.1427E--01 0.1743E--02 0.1423E-01 0.1741E-02 0.287 
- 2  - 2  4 0.1615E--01 0.1685E-02 0.1616E-01 0.1684E-02 0.043 
- 3  3 0 0.1158E--01 0.1601E--02 0.1132E--01 0.1582E-02 2.239 
--3 2 ! 0.1427E-01 0.1744E--02 0.1423E-01 0.1741E-02 0.287 
- 3  1 2 0.1427E--01 0.1744E-02 0.1423E--01 0.1741E--02 0.287 
--3 0 3 0.1158E--01 0.1601E--02 0.1132E--01 0.1582E--02 2.239 
--3 --1 4 0.8357E--02 0.1361E-02 0.8571E-02 0.1380E-02 2.533 
- 4  4 0 0.1189E--01 0.1424E-02 0.1190E--01 0.1424E--02 0.071 
--4 3 1 0.8357E--02 0.1361E--02 0.8571E--02 0.1380E--02 2.533 
--4 2 2 0.1615E-01 0.1685E--02 0.1616E-01 0.1684E-02 0.043 
--4 I 3 0.8357E--02 0.1361E--02 0.8571E--02 0.1380E--02 2.533 
--4 0 4 0.1189E--01 0.1424E--02 0.1190E--01 0.1424E--02 0.071 
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convergence. It is seen that errors due to the use of an 
isotropic vibration model vary from less than 1% to more 
than 5%. 

This work is supported by the Chinese Academy of 
Sciences and the National Natural Science Foundation 
of China (grant no. 19425006), which are gratefully 
acknowledged. 

6. Discussions and conclusions 

We have derived the general expressions for calculat- 
ing both the elastic and absorptive atomic scattering 
amplitudes for the general case of anisotropic thermal 
vibrations. These expressions are derived formally via 
the method of optical potential and the usual assumptions 
for TDS are employed. These assumptions include: 

(i) The electrons that are diffusely scattered are re- 
garded to have been lost to the elastic wave field. This 
is because once electrons are diffusely scattered outside 
the elastic wave field they can hardly return to the elastic 
wave field and may therefore be regarded as lost. 

(ii) The correlation between thermal displacements 
occurring at different atomic sites is not important to the 
total absorptive scattering amplitudes. This is equivalent 
to the use of the Einstein model of lattice vibrations. 

(iii) The strength of the aperiodic potential due to 
thermal vibration is weak in comparison with both 
the primary-beam energy and the averaged periodic 
potential and a first-order-perturbation treatment is used 
for dealing with the effect of the diffusely scattered 
electrons on the elastic wave field. Dynamical diffraction 
of the diffusely scattered electrons hardly affects the total 
absorptive atomic scattering amplitude and is neglected 
in the first-order treatment of TDS. 

(iv) The virtual diffuse scattering effect is small and 
is neglected. 
Under these approximations, the derived expressions 
have identical forms to the usual expressions derived 
for an isotropically vibrating crystal, except that now the 
temperature factor takes a general anisotropic form. For 
an isotropically vibrating crystal, the general temperature 
factor reduces to the usual form exp( -Ms)  in which M s 
is the isotropic Debye-Waller factor. 

Numerical results are presented for one perovskite 
ABX 3 compound, i.e. SrTiO 3. The effect of anisotropy 
in thermal vibrations is investigated for crystal structure 
factors. Our results show that the use of an averaged 
isotropic temperature factor introduces an error of the 
order of a few percent for low- and medium-order 
structure factors. It should be noted that these values are 
comparable with that due to crystal bonding (Spence, 
1993). For silicon and 200keV, the bonding effect 
may alter the scaled structure factors Ug by about 5% 
for (11 l) reflection, but the effect decreases rapidly to 
be less than 1% for (331) reflection. For SrTiO 3, we 
would expect the bonding effect to be of the order of 
a few percent for low-order reflections. The effect of 
anisotropy in TDS should therefore be taken into account 
should any attempt be made to measure the bonding 
effect in this material. 
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